

GWAS of meat quality traits using WGS data in a multi-breed sheep population

Naomi Duijvesteijn

Department of Industry, Innovation and Science Business Cooperative Research Centres Programme

WGS data can be helpful for

- Detecting QTLs and fine-mapping of QTL
 - More variants
 - Variants with low MAF
 - Causative variant?
 - Structural variants
- Increase accuracy genomic prediction
 - Include significant SNPs from GWAS in prediction

work Moghaddar and Khansefid, presented yesterday, session Prediction 1.

What can we expect from WGS data?

- Detect more QTL, more peaks
- Fine map known QTL, sharper peaks

Directly compare with functional studies such as RNA seq

What genotype data do we have?

- 726 sequenced sheep
 - 376 Australian sheep
- ~35,000 sheep with genotypes
 - 12/15K: 10,000
 - 50K: 23,000
 - HD: 2,600

 \rightarrow All imputed up to sequence (Friday presentation Bolormaa session Imputation) \rightarrow 27,896,226 variants (Minimac R² threshold=0.4)

BORDER LEICESTER

COOPWORTH

DORPER

POLL DORSET

MERINO

SUFFOLK

MERINO

11th WCGALP, 2018

Traits and model

- Pre-corrected for fixed effects
- Single SNP analysis
 - SNP Snappy WOMBAT
- Simultaneously fit
 - Grm (based on HD)
 - Qmatrix (breed proportions)

Trait	Ν
CCFAT	13,644
IMF	11,772
PEMD	21,412
PWT	26,769
SF5	13,363

Compare SNP density

FDR of 5%

Zoom of a region

-log10(Tprob) 9 **50K** 2 • 0 GWAS imf HD -log10(Tprob) 9 HD 2 0 GWAS imf SEQ -log10(Tprob) 9 WGS 2 0 43 41 41.5 42 42.5 Position (Mb) at OAR 23

GWAS imf 50K

N QTL per trait

Trait	50K	HD	WGS
CCFAT	4	9	41
IMF	2	8	38
PEMD	4	15	49
PWT	5	13	88
SF5	3	7	34
Total	20	52	250

		1
Signifi	cance SNPs	
(min a	nd max –log10(Pval))	
■50K	: 5-15	
■HD	: 5-22	
■WGS	: 5-29	
	her peaks!	
	and higher.	
> More		1

SHEEPCRC

WGS gives us

- More peaks
- More significant peaks
 - Use more data

- And / or multi-breed pop. LD exists over shorter distances
- The basis for companion studies on functional studies to validate candidate genes and mutations

Acknowledgements

Work with sequence data

•Iona MacLeod, Sunduimijid Bolormaa, Hans Daetwyler, Majid Khansefid (Melbourne)

•Julius van der Werf, Cedric Gondro, Nasir Moghaddar and Sam Clark (UNE)

•Andrew Swan and Klint Gore (AGBU)

•Paul Stothard (University of Alberta)

Funding

Co-operative Research Council (CRC) for Sheep Industry Innovation
MLA (Meat Livestock Australia)

Questions?

